
Download free eBooks at bookboon.com

Click on the ad to read more

Concise Notes on Data Structures and Algorithms

154 

Maps

20 Maps

20.1 Introduction

A very useful collection is one that is a hybrid of lists and sets, called a map, table, dictionary, or associative 

array. A map (as we will call it), is a collection whose elements (which we will refer to as values) are unordered, 

like a set, but whose values are accessible via a key, akin to the way that list elements are accessible by indices.

Map: An unordered collection whose values are accessible using a key.

Another way to think of a map is as a function that maps keys to values (hence the name), like a map 

or function in mathematics. As such, a map is a set of ordered pairs of keys and values such that each 

key is paired with a single value (though a value may be paired with several keys).

20.2 The Map ADT

Maps store values of arbitrary type with keys of arbitrary type, so the ADT is map of (K,T), where K is 

the type of the keys and T is the type of the values in the map. he carrier set of this type is the set of 

all ordered pairs whose irst element is of type K and whose second element is of type T. he carrier set 

thus includes the empty map, the maps with one ordered pair of values of types K and T, the maps with 

two ordered pairs of values of types K and T, and so forth.

 -
 ©

 P
h
o
to

n
o
n
s
to

p

> Apply now

REDEFINE YOUR FUTURE

AXA GLOBAL GRADUATE

PROGRAM 2014

http://bookboon.com/
http://bookboon.com/count/advert/8deaf1ec-df70-474a-b2cd-a29d00a7bfa5


Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

155 

Maps

he essential operations of maps, in addition to those common to all collections, are those for inserting, 

deleting, searching and retrieving keys and values.

empty?(m)—Return true if and only if m is the empty map.

size(m)—Return the number of pairs in map m.

has_key?(m, k)—Return true if and only if map m contains an ordered pair whose irst element 

is k.

has_value?(m, v)—Return true if and only if map m contains an ordered pair whose second 

element is v.

m[k]=v—Return a map just like m except that the ordered pair <k, v> has been added to m. If 

m already contains an ordered pair whose irst element is k, then this ordered pair is replaced 

with the new one.

delete(m, k)—Return a map just like m except that an ordered pair whose irst element is k has 

been removed from m. If no such ordered pair is in m, then the result is m (in other words, if 

there is no pair with key k in m, then this operation has no efect).

m[k]—Return the second element in the ordered pair whose irst element is k. Its precondition 

is that m contains an ordered pair whose irst value is k.

here is considerable similarity between these operations and the operations for lists and sets. For example, 

the delete_at() operation for lists takes a list and an index and removes the element at the designated 

index, while the map operation takes a map and a key and removes the key-value pair matching the key. 

On the other hand, when the list index is out of range, there is a precondition violation, while if the key 

is not present in the map, the map is unchanged. his latter behavior is the same as what happens with 

sets when the set delete() operation is called with an argument that is not in the set.

20.3 The Map Interface

he diagram below in Figure 1 shows the Map interface, which is a sub-interface of Collection. It includes 

all the operations of the map of (K, T) ADT. As usual, the operation parameters are a bit diferent from 

those in the ADT because the map is an implicit parameter of all operations.

http://bookboon.com/


Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

156 

Maps

 Figure 1: The Map Interface

he contains?() operation inherited from Collection is a synonym for has_value?(). As a Collection, 

a Map has an associated Iterator (returned by the Collection iterator() operation). In Ruby, it is 

convenient to have this Iterator traverse the Map and returns its key-value pairs as an array with two 

elements, the irst being the key and the second being the value.

20.4 Contiguous Implementation of the Map ADT

As with sets, using an array or ArrayList to store the ordered pairs of a map is not very eicient because 

only one of the three main operations of insertion, deletion, and search can be done quickly. Also as with 

sets, a characteristic function can be used if the key set is a small integral type (or a small sub-range of an 

integral type), but this situation is rare. Finally as with sets, hashing provides a very eicient contiguous 

implementation of maps and we will discuss how this works later on.

20.5 Linked Implementation of the Map ADT

As with sets, using linked lists to store map elements is not much better than using an array. But again 

as with sets, binary search trees can store map elements and provide fast insertion, deletion, and search 

operations on keys. Furthermore, using binary search trees to store map elements allows the elements 

in the map to be traversed in sorted key order, which is sometimes very useful. A TreeMap is thus an 

excellent implementation of the Map interface.

he trick to using binary search tree to store map elements is to create a class to hold key-value pairs, 

redeining its relational operators to compare keys, and using this as the datum stored in nodes of the 

binary search tree. Dummy class instances with the correct key ield can then be used to search the tree 

and retrieve key-value pairs.

http://bookboon.com/


Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

157 

Maps

20.6 Summary and Conclusion

Maps are extremely important collections because they allow values to be stored using keys, a very 

common need in programming. he map of (K, T) ADT speciies the essential features of the type, 

and the Map interface captures these features and places maps in the Container hierarchy. Contiguous 

implementations are not well suited for maps (except hash tables, which we discuss in the next chapter). 

Binary search trees, however, provide very eicient implementations, so a TreeMap class is a good 

realization of the Map interface. Figure 2 shows how Maps and TreeMaps it into the container hierarchy.

 Figure 2: Maps and TreeMaps in the Container Hierarchy

20.7 Review Questions

1. Why is a map called a map?

2. he Collection interface has a generic parameter T, and the Map interface has generic 

parameters K and T. What is the relationship between them?

3. Why is an array or an ArrayList not a good data structure for implementing the map ADT?

4. Why is a LinkedList not a good data structure to implement the map ADT?

5. Why is a binary search tree a good data structure for implementing the map ADT?

http://bookboon.com/


Download free eBooks at bookboon.com

Click on the ad to read more

Concise Notes on Data Structures and Algorithms

158 

Maps

20.8 Exercises

1. Make a function mapping the states California, Virginia, Michigan, Florida, and Oregon to 

their capitals. If you wanted to store this function in a map ADT, which values would be the 

keys and which the elements?

2. Represent the map described in the previous exercise as a set of ordered pairs. If this map 

is m, then also represent as a set of ordered pairs the map that results when the operation 

remove(m, Michigan) is applied.

3. Is an iterator required for maps? How does this compare with the situation for lists?

4. To make a TreeMap class that uses the BinarySearchTree class discussed in Chapter 18, 

you will need to make a class to hold key-value pairs with comparison operations that work 

on the keys. Write such a Pair class in Ruby.

5. Write the beginnings of a TreeMap class in Ruby that includes its attributes, invariant, 

constructor, and the operations inherited from the Collection interface. You will need to 

make use of the Pair class from the previous exercise.

6. Continue the implementation begun in exercise 5 by writing the []=, [], and delete() 

operations for TreeMap.

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3


Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

159 

Maps

7. Continue the implementation begun in exercise 5 by writing the Enumerable.each() 

operation for TreeMap. his operation should produce each key-value pair, yielding the key 

and value as two elements, just as this operation does for the Ruby Hash class. Also write 

each_key() and each_value() operations, again modeled on the Ruby Hash class.

8. Continue the implementation begun in exercise 5 by writing the iterator() operation (you 

will need a TreeMapIterator class for TreeMap). he Iterator.current() operation should 

return a key-value pair as an array with two elements: the key and the value.

20.9 Review Question Answers

1. A map associates keys and values such that each key is associated with at most one values. 

his is the deinition of a function from keys to values. Functions are also called maps, and 

we take the name of the collection from this meaning of the word.

2. he Collection interface generic parameter T is the same as the Map interface generic 

parameters T: the elements of a Collection are also the values of a Map. But Maps have an 

additional data item—the key—whose type is K.

3. An array or an ArrayList is not a good data structure for implementing the map ADT 

because the key-value pairs would have to be stored in the array or ArrayList in order 

or not in order. If they are stored in order, then inding a key-value pair by its key is fast 

(because we can use binary search), but adding and removing pairs is slow. If pairs are not 

stored in order, then they can be inserted quickly by appending them at the end of the 

collection, but searching for them or inding them when they need to be removed are slow 

operations because they must use sequential search.

4. A LinkedList is not a good data structure to implement the map ADT because although 

key-value pairs can be inserted quickly into a LinkedList, searching for pairs or inding 

them when they need to be removed are slow operations because the LinkedList must be 

traversed node by node.

5. A binary search tree is a good data structure for implementing the map ADT because 

(assuming that the tree remains fairly balanced), adding key-value pairs, searching for them 

by key, and removing them by key, are all done very quickly. Furthermore, if the nodes in 

the tree are traversed in order, then the key-value pairs are accessed in key-order.

http://bookboon.com/

