Concise Notes on Data Structures and Algorithms Maps

20 Maps

20.1 Introduction

A very useful collection is one that is a hybrid of lists and sets, called a map, table, dictionary, or associative
array. A map (as we will call it), is a collection whose elements (which we will refer to as values) are unordered,

like a set, but whose values are accessible via a key, akin to the way that list elements are accessible by indices.

Map: An unordered collection whose values are accessible using a key.

Another way to think of a map is as a function that maps keys to values (hence the name), like a map
or function in mathematics. As such, a map is a set of ordered pairs of keys and values such that each

key is paired with a single value (though a value may be paired with several keys).

20.2 The Map ADT

Maps store values of arbitrary type with keys of arbitrary type, so the ADT is map of (K,T), where K is
the type of the keys and T is the type of the values in the map. The carrier set of this type is the set of
all ordered pairs whose first element is of type K and whose second element is of type T. The carrier set

thus includes the empty map, the maps with one ordered pair of values of types K and T, the maps with

two ordered pairs of values of types K and T, and so forth.

> Apply now

REDEFINE YOUR FUTURE

AXA GLOBAL GRADUATE
PROGRAM 2014

redefining / standards M

Download free eBooks at bookboon.com &\S«\

a
S
g
17}
c
S
=
S
1o
1}
o=
o
©
50

154 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/8deaf1ec-df70-474a-b2cd-a29d00a7bfa5

The essential operations of maps, in addition to those common to all collections, are those for inserting,

deleting, searching and retrieving keys and values.
empty?(m)—Return true if and only if m is the empty map.
size(m)—Return the number of pairs in map m.

has_key?(m, k)—Return true if and only if map m contains an ordered pair whose first element
is k.

has_value?(m, v)—Return true if and only if map m contains an ordered pair whose second

element is v.

m[k]=v—Return a map just like m except that the ordered pair <k, v> has been added to m. If
m already contains an ordered pair whose first element is k, then this ordered pair is replaced

with the new one.

delete(m, k)—Return a map just like m except that an ordered pair whose first element is k has
been removed from m. If no such ordered pair is in m, then the result is m (in other words, if

there is no pair with key k in m, then this operation has no effect).

m[k]—Return the second element in the ordered pair whose first element is k. Its precondition

is that m contains an ordered pair whose first value is k.

There is considerable similarity between these operations and the operations for lists and sets. For example,
the delete_at() operation for lists takes a list and an index and removes the element at the designated
index, while the map operation takes a map and a key and removes the key-value pair matching the key.
On the other hand, when the list index is out of range, there is a precondition violation, while if the key
is not present in the map, the map is unchanged. This latter behavior is the same as what happens with

sets when the set delete() operation is called with an argument that is not in the set.

20.3 The Map Interface

The diagram below in Figure 1 shows the Map interface, which is a sub-interface of Collection. It includes
all the operations of the map of (K, T) ADT. As usual, the operation parameters are a bit different from

those in the ADT because the map is an implicit parameter of all operations.

Download free eBooks at bookboon.com

http://bookboon.com/

T
«interface» L -
Collection ‘
K, T
«interface» L,
Map
[I(key : K) : T { has_key?(key) }

[1=(key : K, value : T)
delete(key : K)

has_key?(key : K) : Boolean
has_value?(value : T) : Boolean

Figure 1: The Map Interface

The contains?() operation inherited from Collection is a synonym for has_value?(). As a Collection,
a Map has an associated Iterator (returned by the Collection iterator() operation). In Ruby, it is
convenient to have this Iterator traverse the Map and returns its key-value pairs as an array with two

elements, the first being the key and the second being the value.

20.4 Contiguous Implementation of the Map ADT

As with sets, using an array or ArrayList to store the ordered pairs of a map is not very efficient because
only one of the three main operations of insertion, deletion, and search can be done quickly. Also as with
sets, a characteristic function can be used if the key set is a small integral type (or a small sub-range of an
integral type), but this situation is rare. Finally as with sets, hashing provides a very efficient contiguous

implementation of maps and we will discuss how this works later on.

20.5 Linked Implementation of the Map ADT

As with sets, using linked lists to store map elements is not much better than using an array. But again
as with sets, binary search trees can store map elements and provide fast insertion, deletion, and search
operations on keys. Furthermore, using binary search trees to store map elements allows the elements
in the map to be traversed in sorted key order, which is sometimes very useful. A TreeMap is thus an

excellent implementation of the Map interface.

The trick to using binary search tree to store map elements is to create a class to hold key-value pairs,
redefining its relational operators to compare keys, and using this as the datum stored in nodes of the
binary search tree. Dummy class instances with the correct key field can then be used to search the tree

and retrieve key-value pairs.

Download free eBooks at bookboon.com

http://bookboon.com/

20.6 Summary and Conclusion

Maps are extremely important collections because they allow values to be stored using keys, a very
common need in programming. The map of (K, T) ADT specifies the essential features of the type,
and the Map interface captures these features and places maps in the Container hierarchy. Contiguous
implementations are not well suited for maps (except hash tables, which we discuss in the next chapter).
Binary search trees, however, provide very efficient implementations, so a TreeMap class is a good

realization of the Map interface. Figure 2 shows how Maps and TreeMaps fit into the container hierarchy.

«interface»
Container

size() : integer
empty?() : Boolean

clear()
A
T
— «interface» LA
«mixin> < — — Collection
Enumerable
iterator() : Iterator
contains?(e : T) : Boolean
==(c : Collection) : Boolean
| — 7
- K, T
«interface» L,
Map
[I(key : K) : T
[1=(key : K, value : T)
delete(key : K)
has_key?(key : K) : Boolean
has_value?(value : T) : Boolean
I
I I K, T
Bi S hTree |<————— =
inarySearc TreeMap

Figure 2: Maps and TreeMaps in the Container Hierarchy

20.7 Review Questions

1. Why is a map called a map?

2. The Collection interface has a generic parameter T, and the Map interface has generic
parameters K and T. What is the relationship between them?

3. Why is an array or an ArrayList not a good data structure for implementing the map ADT?

4. Why is a LinkedList not a good data structure to implement the map ADT?

5. Why is a binary search tree a good data structure for implementing the map ADT?

Download free eBooks at bookboon.com

http://bookboon.com/

Concise Notes on Data Structures and Algorithms

20.8 Exercises

Maps

1. Make a function mapping the states California, Virginia, Michigan, Florida, and Oregon to

their capitals. If you wanted to store this function in a map ADT, which values would be the

keys and which the elements?

2. Represent the map described in the previous exercise as a set of ordered pairs. If this map

is m, then also represent as a set of ordered pairs the map that results when the operation

remove(m, Michigan) is applied.

3. Is an iterator required for maps? How does this compare with the situation for lists?

4. To make a TreeMap class that uses the BinarySearchTree class discussed in Chapter 18,

you will need to make a class to hold key-value pairs with comparison operations that work

on the keys. Write such a Pair class in Ruby.

5. Write the beginnings of a TreeMap class in Ruby that includes its attributes, invariant,

constructor, and the operations inherited from the Collection interface. You will need to

make use of the Pair class from the previous exercise.

6. Continue the implementation begun in exercise 5 by writing the []=, [], and delete()

operations for TreeMap.

i i e
gg'" Stlfategic Marketild
' Management

b\

=

R Busine

inancial BI

ternationa =g
Businegs

[conomics S
/ Leadership &8
v 1 QOrganlsationg
Shipping Psychaloc

Ma agaeti

L

NORWEGIAN e
BUSINESS SCHOOL ~ ~ £Qu!

ACEREDITED

Download free eBooks at bookboon.com

158

Empowering People.
Improving Business.

Bl Norwegian Business School is one of Europe’s
largest business schools welcoming more than 20,000
students. Our programmes provide a stimulating
and multi-cultural leaming environment with an
international outlook ultimately providing students
with professional skills to meet the increasing needs
of businesses.

Bl offers four different two-year, full-time Master of
Science (MSc) programmes that are taught entirely in
English and have been designed to provide professional
skills to meet the increasing need of businesses. The
MSc programmes provide a stimulating and multi-
cultural leaming environment to give you the best
platform to launch into your career.

* M5c in Business

* MSc in Financial Economics

* MSc in Strategic Marketing Management

* MSc in Leadership and Organisational Psychology

www.bi.edu/master

N

Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3

20.9

. Continue the implementation begun in exercise 5 by writing the Enumerable.each ()

operation for TreeMap. This operation should produce each key-value pair, yielding the key
and value as two elements, just as this operation does for the Ruby Hash class. Also write

each key () and each value () operations, again modeled on the Ruby Hash class.

. Continue the implementation begun in exercise 5 by writing the iterator() operation (you

will need a TreeMaplterator class for TreeMap). The Iterator.current() operation should

return a key-value pair as an array with two elements: the key and the value.

Review Question Answers

. A map associates keys and values such that each key is associated with at most one values.

This is the definition of a function from keys to values. Functions are also called maps, and

we take the name of the collection from this meaning of the word.

. The Collection interface generic parameter T is the same as the Map interface generic

parameters T: the elements of a Collection are also the values of a Map. But Maps have an

additional data item—the key—whose type is K.

. An array or an ArrayList is not a good data structure for implementing the map ADT

because the key-value pairs would have to be stored in the array or ArrayList in order

or not in order. If they are stored in order, then finding a key-value pair by its key is fast
(because we can use binary search), but adding and removing pairs is slow. If pairs are not
stored in order, then they can be inserted quickly by appending them at the end of the
collection, but searching for them or finding them when they need to be removed are slow

operations because they must use sequential search.

. A LinkedList is not a good data structure to implement the map ADT because although

key-value pairs can be inserted quickly into a LinkedList, searching for pairs or finding
them when they need to be removed are slow operations because the LinkedList must be

traversed node by node.

. A binary search tree is a good data structure for implementing the map ADT because

(assuming that the tree remains fairly balanced), adding key-value pairs, searching for them
by key, and removing them by key, are all done very quickly. Furthermore, if the nodes in

the tree are traversed in order, then the key-value pairs are accessed in key-order.

Download free eBooks at bookboon.com

http://bookboon.com/

